

Research Unit FOR 2285

"Debris Disks in Planetary Systems"

Semiconductor- & Metallic-Behavior of Iron(II) Sulfides: **A Multi-Wavelengths Study**

Christian Kranhold, Harald Mutschke (AIU/FSU Jena) and Dennis Harries (IGW/FSU Jena)

Abstract

- Iron(II) sulfides: **Sulfur reservoirs in interplanetary dus**t (e.g. in comets, meteorites, IDPs) •
- Prior spectral studies: Covers either the UV-VIS to NIR, or the FIR spectral range
- Our study: Reflectivity data from **VUV to FIR** for the determination of optical constants \bullet
- Five iron(II) sulfides with different Fe/S ratio: From **4C-pyrrhotite to troilite** ullet
- **Binary spectroscopic behavior** between stoichiometric(-like) & iron depleted iron(II) sulfides

Previous Optical Studies

- [1] W. G. Egan, T. Hilgeman, The interstellar medium: UV complex index of refraction of several candidate materials, Astronomical Journal 80, 1975, pp. 587-594.
- [2] W. G. Egan, T. Hilgeman, The Rings of Saturn: A Frost-Coated Semiconductor?, Icarus 30(2) 1977, pp. 413-421.
- [3] B. Begemann, J. Dorschner, T. Henning, H. Mutschke, E. Thamm, A Laboratory Approach to the Interstellar Sulfide Dust Problem, E. 1994, ApJ, 423, L71-L74.
- [4] H. Mutschke, B. Begemann, J. Dorschner, H. Henning, Infrared Physics & Technology 35(2{3) 1994, pp. 361-374.
- [5] J. B. Pollack, D. Hollenbach, S. Beckwith, D. P. Simonelli, T. Roush, W. Fong, Composition and Radiative Properties of Grains in Molecular Clouds and Accretion Disks, The Astrophysical Journal 421 1994, pp. 615-639
- [6] T. Henning, H. Mutschke, Low-temperature infrared properties of cosmic dust analogues., A&A, 1997, pp. 327

Samples

	Troilite	Synthetic [3,4,6]	DAL [7]	NYS [8]	TYS [8]	DEV [9]
Iron(II) Sulfide	Troilite	Troilite with iron	4C- Pvrrhotite	NC-Pyrrhotite: 4.78 – 4.96	NC-Pyrrhotite: 5.12 – 5.52	6C- Pvrrhotite
Iron/Sulfur Ratio	1	1	0.877(1)	0.896(2)	0.903(7)	0.929(2)
Crystal System	Hexagonal	Hexagonal	Monoclinic	Hexagonal		Monoclinic
Origin	MPIK Heidelberg	Begemann, MPS Jena	Harries, IGW Jena			de Velliers
Images	5 mm		5mm		5mm	<u>5 mm</u>

Experimental Setup

- Four spectrometers from VUV to mm wavelength range at 300 K
- Two **frequency domain** spectrometers:
 - VUV: 115 nm 230 nm (under vacuum)
 - UV-VIS-NIR: 190 nm 2.5 µm (under • ambient air)
- Two time domain spectrometers:
 - FTIR: 2.0 μm 500 μm (under vacuum)
 - THz: 250 µm 2 mm (under dry air)
- Low temperature measurements down to 10 K for MIR & FIR

Multi-Wavelengths Reflectivity

- **Binary spectroscopic behavior**:
 - **Semiconductor-like** for stoichiometric troilite
 - Metal-like for iron deficient pyrrhotites

Optical Constants

- Fitting routine based on Levenberg-Marquardt method
- Optimize n, k parameters based on comparison between measured and computed reflectivity
- **Drude-Lorentz-oscillator-model** for troilite & pyrrhotites

Figure 1: Room temperature reflectivity for samples troilite and pyrrhotites from VUV to mm wavelength regime.

Figure 2: Comparison of n & k values for samples troilite and 4C-pyrrhotite with literature [1, 2, 5, 6].

Troilite – Semiconductor:

- Seven phonon bands: 32.4 µm, 34.9 µm, 39.7 μm, 44.5 μm, 67.1 μm, 71.1 μm, 79.7 μm (at room temperature)
- Blue-shift & sharpening of phonon bands

Low Temperature Measurements

4C-Pyrrhotite – Metal:

- Free charge carrier characteristics
- Change of sign for reflectivity change in IR
- Possible origin: Besnus transition at 32 K [10]

Acknowledgements

temperatures.

This work was conducted in the Research Unit FOR 2285 "Debris Disks in Planetary Systems" Deutsche Forschungsgemeinschaft the OŤ (grant MU1164/9-2).

References

temperatures.

- [7] D. Harries, K. Pollok, F. Langenhorst, Oxidative dissolution of 4C- and NC-pyrrhotite: Intrinsic reactivity differences, pH dependence, and the effect of anisotropy. Geochimica et Cosmochimica Acta 102, 2013, pp. 23-44.
- [8] D. Harries, K. Pollok, F. Langenhorst, Translation interface modulation in NC-pyrrhotites: Direct imaging by TEM and a model toward understanding partially disordered structural states. American Mineralogist 96, 2011, pp. 716-731.
- [9] J. P. R. de Velliers, D. C. Liles, The crystal-structure and vacancy distribution in 6C pyrrhotite, American Mineralogist 65, 2010, pp. 148-152.
- [10] D. Koulialias, B. Lesniak, M. Schwotzer, P. G. Weidler, J. F. Löffler, A. U. Gehring, The besnus transition in single-domain 4C pyrrhotite. Geochemistry, Geophysics, Geosystems 20, 2019, pp. 5216- 5224.

Laboratory Astrophysics Workshop 2021

Dornburg, Dornburg Palaces, November 22.-24. 2021